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J. Phys. A: Math. Gen., 13 (1980) 333-346. Printed in Great Britain 

Approximate capacities of some toroidal condensers 

R Cade 
Department of Mathematics, University of Puerto Rico, Mayagiiez, Puerto Rico 

Received 8 March 1979 

Abstract. It is shown that a variety of electrostatic problems involving toroidal condensers 
are solvable approximately by means of a certain type of transformation of Laplace’s 
equation and perturbation theory. After a critique of previous theory of the toroidal 
condenser with concentric-circular section, this problem is re-solved, followed by the 
problem of the elliptic-toroidal condenser. On the basis of these solutions, other problems 
are solved approximately by a double-perturbation approach; namely, the problem of a 
circular torus containing a laminar ring, and that of the circular-toroidal condenser for 
which the circular sections are eccentric. 

1. Introduction 

If two-dimensional orthogonal curvilinear coordinates are defined on a region of the x y  
plane for, say, y 3 0, and are considered to be rotated about the x axis in the sense that 
an azimuthal variable 4 is added, then together with 4 they form a three-dimensional 
orthogonal curvilinear coordinate system. This might be a well-known system; for 
example, by rotating plane polar coordinates (r,  8) defined on the whole half-plane, one 
obtains spherical polar coordinates (r ,  8, 4 )  defined on all of space. But this is 
exceptional. Generally, one will obtain one of a large class of coordinate systems of 
which all but a few special ones are new. They are, generally speaking, of little use in 
mathematical physics, for in every case except where the system is a well-known one, it 
is defined only on a multiply connected toroidal region. However, it could be of use 
when the problem in hand is itself concerned with the interior of a torus. 

This fact was perceived, in the context of electrostatics and in one special case, at 
least, by Waters (1956), who gave a theory of the toroidal condenser whose surfaces are 
formed by the rotation of concentric circles, as shown in figure 1. The plane coordinate 
system rotated consists of plane polar coordinates ( r ,  e) ,  with pole at the point (0 ,  b )  
(b  > 0) and initial line from (0, b )  through the origin. They are defined for c s r s a 
(a < b) ,  where c and a are the radii of the interior and exterior circles respectively, and 
for all 8 reckoned clockwise from 0 to 27r. Thus, relative to the left-hand axes and 4 
direction of figure 1, the orthogonal curvilinear coordinate system of space, (r ,  8, 4 ) ,  is 
related to the spatial Cartesian coordinates (x, y, z )  by 

x = r sin 8, y = ( b  - r cos 8) cos 4, z = ( b  - r cos e) sin 4, (1) 

In order to solve the condenser problem, Waters (1956) transforms Laplace’s 
equation into these coordinates, whereupon, for an axisymetric potential V ( r ,  e) ,  

0305-4470/80/010333 + 14$01.00 @ 1980 The Institute of Physics 333 



334 R Cade 

Figure 1. Concentric circles which are rotated to generate the surfaces of a toroidal 
condenser. 

independent of 4, it becomes 

This equation, despite its neat and concise form, is not simple, for it is not separable, nor 
is any change of variable apparent under which it becomes so. Nevertheless, Waters 
gives an incisive theory of it, but one which, most unfortunately, appears to contain a 
deep-seated error. His formula for the capacity, 

(CGS electrostatic units), which he claims to be exact, is evidently invalid. 
We shall explain the error and shall reach the position of doubting whether (2) is 

amenable to exact treatment. We shall then re-solve the problem approximately, by 
perturbation theory, regarding a /b  (and thus r/b) as small and treating the difference of 
(2) from the plane-polar form of Laplace's equation as a perturbation upon the latter. In 
fact, by this method, the solution for C comes out as a power series in a/b, so that (3), if 
it were correct at all, would be the solution to the second order. We shall obtain the 
fourth-order solution. 

As we have indicated, (r, 0, q5), related to (x, y, z )  according to ( l ) ,  is but one of a 
large class of coordinate systems obtainable by the rotation of plane systems, and after 
solving the problem for the condenser described above, we shall solve approximately 
some other toroidal condenser problems. 

The classical approach to torus problems in electrostatics is the theory of toroidal 
harmonics (see Hobson 1965, Morse and Feshbach 1953). This leads to solutions which 
are exact but, even for the simplest problems, infinite series of difficult functions (the 
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Legendre functions of half-integral order). The real disadvantage in the present 
context, however, is that the only tractable condenser problem is one for which the 
generating circles are not concentric but, for given radii, have specific eccentricity (for 
they correspond to constant values of a toroidal coordinate and as such, belong to a 
precise coaxial, but not concentric, system). There is merit in studying the situation in 
which there is arbitrary eccentricity, and this is a problem which we shall solve 
approximately, but clearly, one in which there is specific eccentricity is of only very 
slight physical interest. The case of concentric generating circles is, from the physical 
point of view, overwhelmingly the most interesting and is the one to which we give our 
main attention. 

2. Nomenclature 

The toroidal systems we study will always be coaxial, but there will be no need to use the 
word ‘coaxial’ as nothing seems to be known about toroidal electrostatic systems which 
do not have this property. 

Thus a torus is always a surface of revolution, and we describe it according to the 
form of the generating curve. For example, the rotation of a circle gives what we call a 
circular torus. If the two conducting surfaces of a toroidal condenser are generated by 
curves of the same description, we use this description for the condenser itself. For 
example, the condensers described in the last section are circular-toroidal ones. To 
refine the description, we must speak of the relative quality of the generating curves. 
Thus we may have a concentric-section circular-toroidal condenser, or an eccentric- 
section circular-toroidal condenser, or, as we shall see later, a confocal-section elliptic- 
toroidal condenser. 

The above nomenclature may still not describe a situation adequately since, for 
example, an eccentric-section circular-toroidal condenser is not necessarily such that 
one torus is inside the other. However, we would refer to one in which the tori were 
mutually outside as a non-enclosed circular-toroidal condenser, although this will not 
concern us in this paper. If the surfaces of a condenser are generated by curves of 
different form, no concise nomenclature seems possible. 

The above condensers are fundamentally different from the one studied by Bolduc 
eta1 (1973), in which the two conducting surfaces are parts of the same torus, split, so to 
speak, and to which they refer as the ‘the’ toroidal condenser. 

3. The concentric-section circular-toroidal condenser: 

Recognising that equation (2) is not separable, Waters 
form of a Fourier series: 

v = 1 an(p )  cos ne, 
n =O 

critique of previous theory 

(1956) seeks a solution in the 

(4) 

where p is the dimensionless coordinate r/b. Substitution into (2) and use of the 
orthogonality of the cosines gives 
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d2a, da, n 2  1 1 2d2an-1 p T + - - - a n  +-n(n  -- l)a,-1 - p - - ~ p  - 
d P  d F  P 2 dP  d F  

( n  > 1). 1 da,+l 1 2 d 2 a l l + ~  +-n(n +l)a,.tl-p-----p -- 2 - 0  
2 dP  2 dP  

The problem is to determine the a, recursively, which will evidently be possible if 
one can find ao. Now by (4) and orthogonality again, a. must carry the boundary 
conditions, which are that V has given distinct constant values when p = c / b  and a lb ,  
for the other coefficients by necessity vanish when p has these values. Waters, noting 
that the simple coaxial-cylinder solution for a. will not do, since it will not allow a l ,  as 
subsequently found, to vanish when p is in turn both c l b  and alb,  guesses a slightly less 
simple form for a. for which this obstacle does not occur, and then finds, indeed, that he 
can determine all of the u,~. 

The difficulty is that one can make other guesszs for a. which serve equally well, in 
fact, infinitely many, so that one can obtain infinitely many distinct ‘solutions’. This is of 
course impossible by uniqueness-and it is uniqueness which is the pitfall of Waters’ 
argument, for having obtained one procedure which seems to work, one is impelled to 
invoke it immediately to infer that the result is correct. 

We are now confronted with the question of what is the feature which makes all but 
one of the infinity of ‘solutions’ incorrect. We can only answer this by default, as it were, 
looking for something in the theory which is not assuredly sound and inferring that i t  
must have gone wrong. The striking possibility seems to be convergence. Waters does 
not show that the series he obtains, for example, is convergent, nor, since it contains 
both positive and negative powers of p, is it by any means obviously so. We conclude 
that its status is no higher than that of any other of the infinitely many possibilities, and 
that the a priori likelihood of its being the solution is nil. 

Evidently the only hope of making the method work is to approach equations ( 5 )  
deductively, attempting, say, a successive elimination of the a, for n > 0, with a view to 
obtaining by a limiting process an equation for a. alone. This is a most unpromising 
undertaking, and efforts of the kind by the present author have been fruitless. The 
problem is essentially a case of the general one of solving an infinite set of linear 
simultaneous differential equations, about which it seems safe to say that little is known, 
especially when, as here, the coefficients are non-constant. 

4. The concentric-section circular-toroidal condenser: approximate new theory 

The approximate method we use is a straightforward application of standard pertur- 
bation theory, and it will not therefore need a great deal of description. 

In the limit as b +CO, (2) becomes the plane-polar form of Laplace’s equation, 
appropriate to the limiting situation in which the toroidal condenser becomes a 
coaxial-cylindrical condenser. The solution for the potential in this case, having the 
value Vc (ZO) when r = c, and 0 when r = a, is well known to be 

a 
log -. Vo=- 

loga lc  r 
VC 
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Now let us express r/b in (2) as (r/a)(a/b) and agree to regard a /b  as small. Then if we 
write V1 = Vo+(a/b)$l(r, e), substitute this into (2) and drop terms with the factor 
a2 /b2  as they occur, we find that JI1 must be of the form All(r) cos 8 and obtain a 
second-order ordinary differential equation for A 11  which is easily solvable by elemen- 
tary methods. Solution introduces two constants, and these we choose so that All(c) = 
All(a)=O, for then we maintain the boundary conditions by having Vl(c)= Vc, 
Vl(a) = 0. 

This is the first stage in the perturbation process. Now, knowing both Vo and iJ1, we 
write V2= Vo+(a/b)$l(r, O ) + ( ~ ~ / b ~ ) $ ~ ( r ,  e), substitute into (2) and drop terms with 
a3/b3. We hence find that $2 must be of the form A20(r)+A22(r) cos 28, and obtain 
independent second-order ordinary differential equations for A 2 0  and A22 which again 
are easily solvable. Choosing the constants so that A20(c) = A20(a) = 0, A22(c) = 
A22(a)  = 0, we shall now have V2 satisfying the boundary conditions. 

The process we are describing can be carried to any order, and seems never to be 
more than a matter of elementary algebra and calculus, although at the third order the 
algebra becomes heavy and will eventually be so to the extent of intractability. In fact, 
what we are finding at the nth order is the nth term of a series solution of the form 

(7) 

It is characteristic of perturbation theory, that we can never know this series completely, 
but can in principle calculate its nth partial sum V,, for n as large as we please. 

In terms of the potential V, the surface charge density on the inner torus is, by 
Coulomb’s theorem, - (1/4~)(aV/ar) ,=, ,  and the surface element is given by c(b - 
c cos 8) d8  dd.  Hence the capacity of the toroidal condenser in which the outer torus is 
the zero-potential (‘grounded’) conductor is 

27r 27r 

4TVc 0 r = c  
C=’l lo (3 (b--ccosO)dOdq5, 

and of course, the q5 integration can be carried out at once to give a factor 21r. More 
particularly, the 2nth approximation to C is found, with the use of (6) and (7), to be 

the capacity being modified only at even orders of the perturbation parameter (here 
a/b),  as always seems to happen in perturbation theory, although we know of no 
general theorem to this effect. 

As we have said, the detail of the calculation is elementary, if in its later stages 
tedious, and a closer description is hardly called for. The result for the capacity to the 
fourth order is 
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29 a4-c4 
16 a 4  log a / c  2a4 log2 a / c  

+---- 

This is a clear negation of Waters' claim that a result to the order a 2 / b 2  is exact, and 
moreover, we see how completely different is the a ' / b 2  term from the corresponding 
one in his formula, (3). 

We write down the result for the third-order field, as this might be of some interest in 
itself: 

1 
8 

log r + -a l r2  + a2 log r + p2 

+ 

1 a210ga-c2 iogc  1 a2c2 a 
2 a - c  CY1=-- 2 2  7 P l = z  -p-pg;, 

(11) 

- (a2 - c 2 )  1 2a2c2 log a / c  a* log c - c 2  log a 
16loga/c '  "=16( log a /c  a - c  

a2 = + 

3a4 log a + 2a2c2 log a/c  - 3c4 log c 1 a4c4 a 
9 P3=- 4 l o g c '  1 6 a  - c  

CY3 = - 
16(a4-c4) 

a'log a - c 2  log c + a2c210ga/c  5 
8 ( a 2 - c 2 )  64 16 

CY4 = - - ( a 2 + c 2 ) +  

3 a4c4 a a4c4 2 a  
P4=64a  c + log -- log ;> 64(a4-c4) c 1 6 ( a 2 - ~ 2 ) 2  

log c a2c2(3a4+7a2c2+3c4)  log a / c  
) -- 64(a + c ' ) ( a  - c6) ' 

1 a6c6 a 
p5=- =log-. 

6 4 a  - c  c 

We did not calculate the field fully to the fourth order, for the algebra is very heavy at 
this stage, while, as we see by (9), only the h 4 ~  part of the a4/b4 term is needed for the 
calculation of the fourth-order capacity, (10). Of course, while the difference C - C4 
(the error of our result, as it were) is of order a6/b6 ,  the difference V-  V3 is of order 
a4/b4. 
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5. The confocal-section elliptic-toroidal condenser 

Elliptic coordinates ( 6 , ~ )  are defined by their relationship to Cartesian coordinates, 
which we shall denote by ( x ” ,  y”), by 

x ”  = f sinh r] sin 6, y” = f cosh r] COS 6, (12 )  

where f is a constant with the property that the (Cartesian) points (0, f), (0, -f) are the 
common foci of the family of ellipses given by constant values of the coordinate q. If we 
make the Cartesian transformation 

x ’  = x ”  cos a + y ”  sin a, y’  = y ”  cos a - x” sin a, (13) 

a rotation, then the major axis of each ellipse makes the angle a with the y f  axis. We 
next make a translation, introducing coordinates ( x ,  y )  by 

x = x ’ ,  y = y ‘ + b  (b>O), (14) 

so that, while the major axes make the angle a with the y axis, the centres of the ellipses 
are the point (0 ,b) .  The disposition of any particular ellipse in the respective Cartesian 
systems is illustrated in figure 2 ( a ) - ( c ) .  

x ” X ’  X X 

(01 ( b l  (c l  ( d  1 

Figure 2. An ellipse relative to successive sets of coordinate axes; two confocal ellipses in 
the final set. 

We shall be concerned with the region of the plane bounded by the ellipses q = qo, 
q = q ~ ( > q o ) ,  that is, for 70s q 6 ql, and we shall suppose that b in (14) is large enough 
for the ellipse q = rll, which encloses the ellipse q = qo, to be entirely to the right of the 
x axis (figure 2 ( d ) ) .  If we now ‘rotate’ the coordinates (6, q), qos q s ql, about the x 
axis in the manner described in § 1, we shall have an orthogonal curvilinear coordinate 
system for space, (6, q, C$), related to the left-hand Cartesian coordinates ( x ,  y, z )  by 

x = f sinh q sin 6 cos a +f cosh q cos 5 sin a, 

y = (f cosh q cos 5 cos a - f sinh q sin 6 sin a + 6 )  cos 4, (15) 

z = (f cosh q cos 8 cos a -fsinh q sin 6 sin a + b )  sin 4, 

and these coordinates will be suitable for describing the elliptic-toroidal region 
generated by rotation of the plane region given by qos q G ql. 
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We shall regard the tori r] = v0, 17 = 771 as the conducting surfaces of a confocal- 
section elliptic-toroidal condenser in which the outer conductor is grounded, and, with a 
view to finding the capacity of this condenser, shall transform Laplace’s equation into 
the coordinates (&q, (6). This is easily done by use of a standard formula (holding for 
curvilinear coordinates generally, see Hobson (1965) or Jeans (1960)), and the result 
for an axisymmetric potential V(& v ) ,  expressed in a form convenient for our purposes, 
is 

d2 V d2 V 
86’ ‘ 2 - b  +f(cosh 77 cos 5 cos a -sinh 77 sin 5 sin a )  

f(cosh 77 sin 5 cos a + sinh cos 5 sin a )  d V - 

(16) 
f(sinh 77 cos 5 cos a -cosh 77 sin 5 sin a )  dV 

0. + -= 
b +f(cosh q cos 5 cos a -sinh q sin 5 sin a )  d q  

It is clear that, without the first-derivative terms, (16) is the elliptic-coordinate form 
of Laplace’s equation, and that, regarding cosh .q/b, sinh v / b  as small, the extra terms 
can be treated as a perturbation in the same manner as in the last section in the case of 
equation (2). The unperturbed solution, having value V, (ZO) on the inner torus and 
vanishing on the outer one, is 

vo= vc(-), 771-77 
771 - 770 

and a first-order solution of the form V1 = V0+(f/b)r/ll(5, q), where t , b ~ = A l ~ ( q )  
x c o ~ ~ + ~ ~ ~ ( 7 7 ) s i n ~ ,  is found to fit; then a second-order solution of the 
form VZ= vo+(f/b)$1(5, 7 7 ) + ( f 2 / b 2 M 5 ,  T ) ,  where $ z = A ~ o ( T ) + A ~ ~ ( v )  cos 25 
+h;2(q) sin 25, and so on. In fact, the procedure is very like the one in the last section 
and not in the least more difficult. Conspicuous differences are, firstly, the occurrence 
of sines as well as cosines, due to the present system not having, in general, symmetry 
about an equatorial plane, and secondly, that the calculation, for orders of perturbation 
above the first, requires expansion of the denominator in (16) as a geometric series and 
subsequent truncation to the required order. 

The general formula for the capacity, corresponding to (8), is now 

and we easily find a formula corresponding to (9). However, in view of the parallelism 
with the previous problem, no more description than we have given seems necessary, 
and we give the result for the capacity to the second order: 

11. 1 sinh 2v1 -sinh 2v0 -cos 2a -: 
V I - T O  J J  2 

In terms of the lengths of the semi-major axes of the respective inner and outer 
elliptic sections, c and a, we have cosh 770 = c / f ,  cosh v1 = a/f (the semi-minor axis is of 
course fixed by the semi-major axis andf), whereby we can express (19) in a form which, 
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if less simple, is in terms of more tangible geometrical parameters: 

.rrb ( 1 +$[(cosh-' --cosh-' a 2, 
f f 

c2 = 
cosh-' a/  f - cosh-' c/ f 

34 1 

If a and c are fixed and f goes to zero, the elliptic sections become, in the limit, 
concentric circular sections with radii a and c. In this limit, therefore, (20) should 
become (10) truncated at the second order, and this is easily found to be the case. We 
therefore have an independent mutual check as far as the second order is concerned. 

We note that in (19) and (20), f/b is appearing as the natural perturbation 
parameter. In fact, the condition a < b implies that f < eb, where e is the eccentricity of 
the outer elliptic section. Therefore the need for the perturbation parameter to be 
'small' is not to be understood, as it was in the previous problem, as a requirement 
relative to unity, but rather to e.  

6. The circular-torus and enclosed laminar-ring condenser 

It might reasonably be said that the problem of the last section is more interesting 
mathematically than physically, the elliptic-toroidal configuration being in practice an 
unlikely one. However, it provides the basis for the approximate solution of a problem 
which might be considered to be of some interest in the physical context. 

In the limit v0+ 0, the inner elliptic section degenerates into a line segment of length 
2c ,  while, if q1  is large, the outer section approximates to a circle. Then, indeed, if we 
replace the outer ellipse by the approximating circle, the surfaces in three dimensions 
correspond to a condenser whose inner conductor is a laminar ring and whose outer 
conductor is a circular torus (see figure 3). If a = 0, the lamina is a so-called flat ring or 

I 

Figure 3. A circle and line segment which are rotated to generate a torus containing a 
laminar ring. 
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annular disc, while if cy = $T, we call it a cylindrical ring. In general, when cy is neither 0 
nor fr, we call it a conical ring. 

The passage from the solution of an electrostatic problem in which a conducting 
surface is a coordinate surface of the system in use, to an approximate solution for a 
conducting surface which is a little different and not coincident with a coordinate 
surface, is made by a well-known method (Jeans 1960). It involves perturbation of the 
boundary condition rather than of the equation to be solved, so that in the present case, 
when we are already perturbing a standard form of Laplace’s equation, we shall have a 
double perturbation process. 

The approximating circle we take to be the one with the same centre as that of the 
ellipse q = ql, and touching this ellipse at the ends of the major axis; that is, the one 
known as the director circle. Having the radius a =fcosh q l ,  it satisfies, by (12), the 
equation 

cosh’ 7 cos’ efsinh’ q sin’ 5 =cosh’ ql, 

the solution of which for 7, 

77 = cosh-’[(cosh’ v1 +sin2 5)1’2], 
is its equation in the form of 77 as a function of 5. With the understanding that q l  is large, 
sin[/coshvl is small, and the Taylor expansion of (21) up to the first power in 
sin2 [/cosh’ q1 gives us 

1 cos 25 
7 7 = 7 7 1 +  2 sinh 2q1-2  sinh 2q1’ 

This is the kind of expression we want, for it is a finite trigonometrical series in terms 
of 5, ending in 2.5, exactly as is the solution for the second-order field in the problem of 
the last section. It provides a perturbation of the outer boundary condition which 
demands only a re-determination of the constants occurring in the solution of that 
problem. 

In fact, the unperturbed solution Vo = A  + Bq must satisfy, on the inner and outer 
boundaries respectively, 

A + Bqo = V,, (23) 

But the boundary conditions will be satisfied by taking 

A + Bq0 = V,, A + Bv, = 0, 

which gives us again (17), and, at the outer boundary, equating to zero the sum of the 
remaining part of (23) and the quantity ( f 2 / h ’ ) ( A ~ 0 ( q l ) + A ~ 2 ( 7 7 1 )  cos 25) which comes 
from the second-order field V,. 

The result will be a self-consistent determination of the second-order field provided 
we are correct at the outer boundary in using, instead of 77 as given by (22), q = v1 for 
A z o ( v ) ,  h22(71) and ~ZZ(V), and for h l l ( v )  and i 1 1 ( q )  of the first-order field. The 
correctness in fact depends upon how we match orders of approximation, appreciating 
the double nature of the perturbation process. It is natural to look upon (22) as an 
expression for the second approximation in which the first-order correction is zero, in 
view of the correspondence of form with the second-order solution of Laplace’s 
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equation, but this is justified only if the respective second-order corrections are of 
comparable magnitude. If we assume that this is the case, then the use of (22)  instead of 
q = q1 in A l l ,  ill, A z o , .  . . will affect only the third and fourth orders and so be 
superfluous. We are not tied to this assumption, however, and the conditions of a given 
physical situation might require otherwise; but it is the simplest we can make in an 
expository discussion. 

In this way, we have only to re-determine A z O ( q )  and A 2 2 ( q )  as described above. This 
in turn, in the case of Azo, affects the determination of the capacity, the result for which 
to the second order (having taken qo = 0 (so that f = c )  and cosh q1 = a / c )  is 

.rrb C 2  

c2 = cosh-’ a / c [ l - 4 a ( a 2 -  c2) l l2  cosh-’ a l c  

2a a ( a 2  - c2)1/2 
c2  cosh-’ a l c  

cosh-’ a l c  cos2 CY -cos 2a - 

As can be seen by comparing this result with (20) in which we put f = c, it is the second 
term in the square brackets which represents the departure from the elliptic of the 
circular outer section. 

7. The eccentric-section circular-toroidal condenser 

Our initial study of the problem of the present section will show how our general 
method is capable of failure. 

The appropriate coordinate system for studying the region bounded by two eccen- 
tric circles is bipolar coordinates (6, q )  related to Cartesian coordinates (X, Y) by 

f sin 6 f sinh q X =  Y =  
cosh 177 -COS 6’ cosh q - cos 5 

(see Morse and Feshbach 1953). In fact, the curves q = constant are a family of coaxial 
circles with centres on the Y axis, and if we are given arbitrarily any two circles, one 
inside the other, the quantitative information being their radii and the separation of 
their centres, it is possible to choose qo, q1 and f so that, according to (25) ,  q = qo is the 
inner circle and q = q1 the outer one. Then the coordinates ( 6 , ~ )  will describe the ring 
shaped region bounded by these circles. 

However, we shall make a transformation similar to (12)-(14),  except for there 
being an additional step, the first, in which we make the translation which places the 
origin at the centre of the inner circle. Then, calling the new Cartesian coordinates 
( x ” ,  y”), we make precisely the transformations (13 )  and (14) ,  choosing b large enough 
so that finally the x axis is outside both circles. The process is illustrated in figure 4 .  We 
now ‘rotate’ the coordinates (6, q )  about the x axis in the way that led from (14 )  to (15), 
so obtaining orthogonal curvilinear coordinates of space, (&q, C$), which describe a 
given eccentric-section circular-toroidal region of which the inner and outer tori are 
given respectively by q = qo, q = ql. Without the preliminary Cartesian trans- 
formation (or, as we might say, if the Cartesian transformation were the identical one, 
so that x = X ,  y = Y), (5, q, 4) are ordinary toroidal coordinates (cf Morse and 
Feshbach 1953, Hobson 1965). 
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Figure 4. Two eccentric circles relative to successive sets of coordinate axes. 

Transformation of Laplace’s equation follows the same lines as the derivation of the 
form (16) from (15). We give no details and merely write down the result, again for the 
axisymmetric case V = V ( [ ,  7): 

a’ v/a[’ + a* v/dq’ + D-’(cosh q cos [ sin a - sinh q sin [ cos a -sin a)d V/d[ 

+D-’(cos a -cosh q cos [ cos a -sinh q sin [ sin a)dV/dq = 0, (26) 

D = (cosh q -cos [){sin [ sin a + sinh q cos a + [(b - d cos a)/f](cosh q -cos [)}. 

Here d = ( f ’ + ~ ~ ) * ’ ~ ,  where c is the radius of the inner circular section; in fact (0, d )  is 
the centre of this circle in the original Cartesian system (X,  Y )  (see figul. 4(a)), while 
( 0 , f )  is the limiting position in these coordinates, of the centres of the circles q = 
constant as q + 00. 

A quick comparison of (26) with (16) suggests that the same sort of perturbation 
procedure should work, starting with the same zero-order solution, V = A +Bq, and 
using now f / ( b  - d  cos a )  as perturbation parameter. However, we run into difficulty, 
for, whereas with the successive approximation procedure for (16) the function part of 
the denominator disappears through the geometric series expansion, in (26) we cannot 
so get rid of a denominator which contains a function of [. The result is that, at each 
stage, the factor of the power of the perturbation parameter is at best an infinite Fourier 
series, assuming that we have a means of expanding the denominator in this way, and 
the viability of our previous perturbation analysis depended upon our having finite 
Fourier series. The situation might offer hope if we could find the explicit nature of the 
Fourier series, but we cannot even do this. 

There are still more difficulties. Suppose that we could solve the problem. Then if 
the radii a and c of the respective outer and inner sections are held constant but the 
separation of their centres tends to zero, we should expect to be able to recover previous 
results obtained by using the coordinates ( r ,  8,d) and equation (2). However, it follows 
by the algebra associated with (25) that, as the separation tends to zero, d tends to 
infinity, so that we have trouble with the perturbation parameter f / ( b  - d cos a ) .  It 
appears that, in the case of the bipolar coordinates (25), our spatial curvilinear 
coordinates and perturbation method are fundamentally incompatible. 

In order to obtain a result at all for the problem in hand, we shall go back to (2) and 
modify the analysis of 0 4. In fact, we invoke precisely a double perturbation procedure 
comparable with that used in the last section. 

In the coordinates ( x ’ ,  y ’ ) ,  with origin the centre of the inner circle and such that the 
line of centres has inclination a to the x axis (see figure 4(c)), the equation of the outer 
circle, when we denote the separation of the respective centres by U E ,  is 

( x ’ -  U E  sin a)’+ ( y ’ -  ae cos a)’ = a’. 
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We regard E as small, being our second, independent, perturbation parameter. Then 
introducing plane polar coordinates (r, 0 )  by x ’  = r sin 0, y ‘  = -r cos 6’ (cf 9 l ) ,  and 
solving for r as far as E’,  we obtain 

r = a [ I + E ( c o s a  cose-s ina  s ine)-&2(1-cos2a cos2e+s in2a  sin2e)]. (27) 
We have thus carried out a well-known procedure (cf Jeans 1960) of perturbing the 
outer boundary by merely (approximately) translating it. 

Now, exactly as in the problem of the last section, we regard orders of approxima- 
tion in the respective perturbation parameters as matching, and replace the boundary 
condition that the potential should vanish when r = a, by the condition that it should 
vanish when r is given by (27). We repeat the analysis of § 4, but only as far as the 
second order and with the present modification, noting that, having in general lost 
symmetry about the plane x =0,  the first-order field has to include a term 
( a / b i l l ( r )  sin 8. In fact, because of the presence of a first-order term in (27), the 
calculation is more complicated than that occurring in the last section, and considerable 
care is necessary, although being in terms of r and 8, it is of a more familiar kind. The 
result for the capacity to the second order is 

c2=w[1+$( a 2 - c 2  
(28)  

E 2 a 2  1- U €  c2 cos a + -- ~ 

r b  a 2  2c210ga/c - a 2 - c 2  
2a210ga/c) b a 2 - c 2  (a2-c2) loga /c  

If we put E = 0, this result reduces to (10) for the concentric-section condenser, 
truncated at the second order. If we divide by 2rrb and make b -+ 00 (i.e. a / b  + 0), we 
obtain a formula for the capacity per unit length of an enclosed biaxial-cylindrical 
condenser. In this limit when also E = 0, the formula is the well-known elementary one 
for the coaxial-cylindrical condenser. If a = 7~ and b = [a2(1 - e 2 )  - c2] /2a~ ,  the two 
tori are coordinate surfaces of a system of ordinary toroidal coordinates, and for this 
condenser the exact capacity (in infinite terms) is known by toroidal harmonics 
(Buchholz 1957). Thus we might expect (28) in this case to be some approximation to 
that result, but we have no means of making a comparison. 

The first-order term in (27) leads to a coupling of the two perturbation processes, 
something which, at the second order, does not occur in the problem of the last section. 
This is represented in (28) by the term with ‘mixed’ factor aE/b ( a / b  and E being the two 
perturbation parameters), While the angle a occurs in this term, it does not in the E’ 

term, as must clearly be the case, for this term is still present in the above-mentioned 
limit as b + 03, when the condenser is a biaxial-cylindrical one whose intrinsic geometry 
is independent of a.  

In formula (10) for the concentric-section condenser, although C, -+ CO as c -+ a, as it 
presumably must, the factor in square brackets tends to a finite limit. This is not so now, 
in the case of (28), but then it is not meaningful to take this limit without making E + 0 
correspondingly. There seems to be a hint that (28) would not be too reliable if EU were 
at all a large factor of a - c. 

8. General discussion 

In none of our solutions did we show that our perturbation process was leading to a 
convergent series, and it might therefore be said that our method is open to the same 
criticism as we ourselves made of the method of Waters (1956). However, there is a 
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difference. The results to which the perturbation theory leads are unique within that 
theory, whereas with Waters’ method this is not the case. The situation is not so much 
that, in the failure to find a positive explanation for the lack of uniqueness, we blamed it 
on non-convergence, as of the non-uniqueness being a genuine symptom of a con- 
vergence difficulty. 

Referring to our critique in § 3 and then to the theory of P 4, we are able to pick out 
the true form of the function a&) in (4) and (5). It is, from (6) and (7), 

and noting the trend of (11) (in which Azo is explicitly represented), one is left in no 
doubt that it is a highly complicated function, the sum function of an infinite series 
of functions which are themselves progressively more complicated. This seems to 
establish conclusively the error of Waters’ theory and also to confirm the suspicion 
we expressed, that a correct theory on the same lines is not feasible. 

The theory of this paper has been essentially a perturbation theory of standard 
forms of Laplace’s equation. Another perturbation theory for torus problems has 
recently been given (Cade 1978) in which the perturbation is of the integral equations of 
electrostatics. This is a more powerful theory, being applicable not only to interior 
problems, but to exterior problems, for which the methods of the present paper break 
down completely. However, the present theory has the advantage that, where it is 
applicable, it is easier. Thus, for example, whereas it would in principle be possible to 
obtain the fourth-order result (10) by the integral equation method, in practice an 
amount of labour comparable with that expended here would be required to go to the 
second order. 

A virtue of the integral equation method is that two of the problems it solves are 
ones which have been solved exactly by other methods (the single circular torus and the 
flat ring, see Cade (1978)), for this gives us a clue regarding the accuracy we can expect 
from the perturbation theory generally. The indications are most encouraging. In the 
case of the single circular torus, the accuracy of the second-order capacity is 0.3% for 
values of a lb  going right up to, although excluding, 1.  In the case of the flat ring, the 
order of accuracy is even higher, 0.025%, which suggests that even where there is an 
error of 0-3’/0, one cannot be sure of where to place it (having regard for the fact that, 
with results based upon exact theory, difficult computations are involved). But most 
striking is the fact that, in both cases, the order of accuracy subsists for values up to (but 
excepting) unity of the perturbation parameter, something which we are not at all 
entitled to expect. 

Evidently we can expect accuracy of this kind with the results of the present paper, 
except possibly where double perturbation analysis is involved, and we may speculate 
that the fourth-order result (10) should be very accurate indeed. 
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